
Responses to openEHR platform product RFI

Context about CaboLabs

CaboLabs helps companies and organizations to build, improve and integrate systems and apps for health. Was founded in 2012 by Pablo Pazos Gutierrez, a Computer Engineer

from Uruguay. He started to work with openEHR in 2006 and created the first online openEHR course in 2011.

Providing consultancy, training and coaching services, related to software architecture design, system / data integration, clinical database design, clinical database audit,

product evaluation before acquisition, and implementation of standards like HL7, DICOM and openEHR. More info: ​https://cabolabs.com/en/

CaboLabs created EHRServer, the first open source clinical data repository compliant with the openEHR standard. CloudEHRServer is the SaaS cloud solution that can cut

development time in eHealth projects, while standardizing all your clinical data and enabling interoperability. CloudEHRServer is provided on a subscription model.

Check our SaaS site: ​https://cloudehrserver.com/

EHRServer is an openEHR back-end system, marketed as a Clinical Data Management and Sharing Open Platform compliant with the openEHR standard. It is composed by a

Web Console for management and audit, a REST API to integrate end-user apps, and a Vendor Neutral Clinical Data Repository. From the Web Console a manager can manage

EHRs, audit Versioned Compositions and Contributions, create stored queries from our Query Builder (not AQL), manage Operational Templates (OPT 1.4), manage accounts,

organizations, users and roles, and audit event logs.

This is not a system for end-users (clinicians, nurses, clinical technicians, etc.), is a tool for clinical information management, for managers. End user apps are created over the
EHRServer and can store and retrieve data via the REST API.

The EHRServer can be translated to any language, currently supports Spanish and English.

EHRServer is open source (​https://github.com/ppazos/cabolabs-ehrserver​), and was the first open source implementation of an openEHR CDR
(​https://cabolabs.com/blog/article/ehrserver_from_proof_of_concept_to_an_open_source_saas_product-5a419d4a94600.html​).

3. Company Information

3.1. General

3.1.1 Company name CaboLabs

3.1.2 Company main office location Montevideo, Uruguay

3.1.3 Company location in Sweden (cities) No

https://cabolabs.com/en/
https://cloudehrserver.com/
https://github.com/ppazos/cabolabs-ehrserver
https://cabolabs.com/blog/article/ehrserver_from_proof_of_concept_to_an_open_source_saas_product-5a419d4a94600.html

3.1.4 Number of employees (total) 1 (we work with/through our network of partners in Argentina, Colombia, Panama, USA, Spain, Chile,
Australia and Korea)

3.1.5 Number of employees in Sweden 0

3.1.6 Web address to company product site https://cloudehrserver.com

3.2 Contact

3.2.1 Name of sales contact Pablo Pazos Gutiérrez

3.2.2 Email of sales contact pablo.pazos@cabolabs.com

3.2.3 Phone number of sales contact +598 99 043 145

3.2.4 Name of technical contact Pablo Pazos Gutiérrez

3.2.5 Email of technical contact pablo.pazos@cabolabs.com

3.2.6 Phone number of technical contact +598 99 043 145

3.3 Partner

3.3.1 Does the company have any sales partners in
Sweden

No

4 Product information

4.1 General

4.1.1 Name of product EHRServer / CLoudEHRServer

4.1.2 Current version of product v1.2, releases can be checked here ​https://github.com/ppazos/cabolabs-ehrserver/releases

4.1.3 Number/size of installations? 1 cloud (multi-tenant, 5 companies using it), 2 test public servers (300+ users until 2017), don't have
numbers on installations of open source solution, but we have 43 forks of the open source project
https://github.com/ppazos/cabolabs-ehrserver

4.1.4 Describe the product update strategy (ex.
number of major/minor update/year)

Revisions and minor updates (bug fixes, improvements, etc.) are released almost weekly to the
community and updated monthly to the cloud server. Major versions (new features, integrations,
refactors) are released each 2 or 3 months to the open source community and the cloud server is

https://cloudehrserver.com/
https://github.com/ppazos/cabolabs-ehrserver/releases
https://github.com/ppazos/cabolabs-ehrserver

updated after each major release.
Change requests and bug reports are filled as GitHub issues and major releases are managed as
milestones: ​https://github.com/ppazos/cabolabs-ehrserver/milestones

4.2 Support

4.2.1 Availability of support (24/7, 8/5 or other) Any combination is possible, depends on the hired level of service. With current clients of the
CloudEHRServer, chat support is available 24/7 and they got an answer right away (for clients on similar
time zones, for clients with more than 8 hours of difference they get an answer in about 3 hours). Email
and video conference are also available. I also tend to invite clients to workshops, demos and Q&A
sessions so they can ask questions and have a little training for their teams to help implementing
openEHR on the client side.

4.2.3 Availability of on-site installation support (free or
billed)

All my current clients are remote, if I need to access a physical server on premise, we setup a VPN or do
SSH using public/private key access. Also my current clients don't have servers on premise, they use the
CloudEHRServer SaaS. If it is cost effective and the situation needs to be physically on-site, that can be
coordinated.

4.2.4 Availability of Health (best practice) checks? We do functional testing, load testing
(​https://cabolabs.com/blog/article/i_tried_to_kill_the_ehrserver-5a9a340db6ebf.html​), and monitor
the cloud server constantly. Also have daily contact with clients that report any issue as they happen,
most are solved within the same day.

4.3 Licensing

4.3.1 Describe the license model for the product The product is free to use. We charge for service (installing, configuring, managing, coaching and
training, support, development, design archetypes and templates, etc.).
Commercial licensing is necessary if the customer is going to develop their solution using the EHRServer
and selling their solution, including the EHRServer, to third parties, this is a development license. Other
type of license is for whitelabelling (adapting the software to the look and feel of a company so they can
provide the EHRServer to their clients as if that was developed by them).

4.3.2 Does the license model have options for setting
up development and QA/environments (not for
real patient care) that differs from production
environment licenses?

All usage is free, production or QA/staging. As stated above, only if the client wants to extend the
system or provide it as part of their solution, a paid development or whitelabelling license is offered.

4.3.3 Describe support agreement alternatives for the
product

1. 24/7 with access to private chat room, email and video calls
2. 8/5 on the client's time zone, access to private chat room, email and video calls
3. time based, on demand: we offer X amount of hours monthly that can be used for support, training,

https://github.com/ppazos/cabolabs-ehrserver/milestones
https://cabolabs.com/blog/article/i_tried_to_kill_the_ehrserver-5a9a340db6ebf.html

coaching, development, etc. (this is a generic consultancy service)

4.4 Procurement & pricing

4.4.1 Is the product offered through Swedish public
sector framework agreements

No

4.4.2 If possible, please provide approximate price
examples for some scenarios. Are there
alternative price models regarding initial and
recurring costs?

Our business model is not based on usage licenses. Number of patients or users doesn't affect the
implementation costs in terms of license. There are two kinds of implementation models, SaaS cloud
deployment and local on-premise deployment. For SaaS we charge for infrastructure, setup,
maintenance and support. For local on-premise deployment we charge for setup, maintenance and
support.

On any case, recurring costs are based on the contracted service level for support and maintenance
(based on time / month).

We can also do knowledge transfer to have trained people on-site to make management/audit tasks.

I can provide hardware server requirements (CPU, memory, disk)if you can provide an number of
patients/EHRs (RFI mentioned 500K), estimated number of clinical documents that will be created per
month, estimated number of queries per month. For on-premise installations, hardware should be
provided by the customer.

4.4.3 How does your business model provide
compensation if promised functions would be
specified in a contract but would not be available
in time as promised?

Separating what is already supported by the EHRServer and related services (currently available) from
the features / systems that should be developed (not currently available). For the later, we can establish
a schedule of payments based on deliverables, no payment until features are delivered and approve by
the counterpart.

5 Functional requirements

5.1 Basic framework

5.1.1 What parts of the openEHR Reference Model
Specification are fully implemented and according
to what version of the specification?

EHRServer supports most of EHR, Common, Data Structures, Support and Data Types for openEHR 1.0.2.
Also supports OPT 1.4 (openEHR 1.0.2).

Since it is a purely clinical data repository, it doesn't include the Demographic RM (that should be
implemented in an external system like a MPI).

The EHRServer supports:

1. Managing EHRs
2. Managing Versioned Compositions with Audit
3. References to demographic entities through Party Proxies
4. All concrete data types but the INTERVAL<T> ones (adding support for INTERVAL is on the roadmap)
5. We are currently working on improving the FOLDER management (FOLDERS are supported but we are
working on making them more usable)

5.1.2 What parts of the openEHR REST API specification
are fully implemented? What formats are
supported? Are any other non standard REST APIs
implemented?

The official openEHR REST API was released a couple of weeks ago. We don't have an implementation
yet but it is on our roadmap. I personally participated of the SEC committee in charge of creating the
official API.

The EHRServer offers a REST API that is pretty close to the official REST API and uses only openEHR valid
formats to commit data (other implementations use their own custom format). Both XML and JSON are
supported. And for query results we will add other output formats like CSV in the future (useful for data
extraction and analysis on a spreadsheet).

5.1.3 Is the openEHR Archetype Query Language
specification fully implemented? Are there any
additional capabilities?

AQL is not supported. We offer path based queries created from a GUI on our Query Builder inside the
EHRServer, that can include complex conditions and support the addition of semantic conditions
specified with SNOMED CT Expressions.
https://cabolabs.com/blog/article/openehr__snomed_ct_a_perfect_combination_for_data_querying-5
a440acd0f763.html

5.1.4 How is validation of EHR content done based on
RM, archetypes and templates by the system?
What types of versions of template-mechanisms
are used for validation?

There are two levels of validation, syntactic validation is done against the Version XML Schema, since
the Version is the commit unit.

For the semantic validation, validating content against the definitions (OPT, archetypes), we are working
with our partner VeraTech that has a validation framework that converts OPTs in content XSDs. This is
under development.

5.1.5 Is GDL (Guideline Definition Language) (at least
version 1.0, TRIAL DRAFT) supported? Are any
other clinical decision support mechanisms
available?

We provide SNOMED CT Expression integration inside openEHR data queries, and the concept of EHR
Queries. This allows to create alerts and calculate some basic indicators. For instance, with the
combination of those mechanisms, the EHRServer can return numbers of EHRs containing patients with
certain gender, age range, that are obese, have a diagnosis of any type of diabetes (using SNOMED CT)
and hypertension, also can return the specific EHR IDs matching that criteria. This can also be used for
patient selection/recruitment for clinical trials. These are not formal CDS rules but are queries that can
be used for CDS.

Generic rule engine for CDS is not built on the EHRServer, another layer of rules should be implemented
over the EHRServer to get data from the EHRServer queries and feed that to evaluate rules.

https://cabolabs.com/blog/article/openehr__snomed_ct_a_perfect_combination_for_data_querying-5a440acd0f763.html
https://cabolabs.com/blog/article/openehr__snomed_ct_a_perfect_combination_for_data_querying-5a440acd0f763.html

5.1.6 What parts of the new “Task Planning Model
Specification” are implemented?

Task planning is a very new openEHR spec, I doubt any provider has an implementation of it besides the
provider that requested/sponsored that specification to be created.

It is not yet implemented on the EHRServer, but we plan to add support in the future, to maintain the
execution state of instruction activities, and allow to query those structures.

5.1.7 What parts in the 5.1.x questions above that are
not implemented right now will be available in
September 2018?

Our plan is to have the official REST API implemented and also have semantic validation based on OPTs.
Basic support for AQL and Task Planning will be added at some point, but is not a priority yet.

5.1.8 Describe available terminology service
usage/integrations. Is the terminology service
addressable from AQL queries? Is there a FHIR
Terminology Service interface?

Since the EHRServer is a backend system, it doesn't require to use terminology services directly, that
should be done at the end-user level.

The EHRServer supports SNOMED CT Expressions in openEHR data queries based on archetype ids and
paths, not using AQL yet.

5.2 Test & performance

5.2.1 Please provide information and results from AQL
query performance tests done for the product.
(Have you for example run any of the “ORBDA”
example tests?)

AQL is not supported yet.

5.2.2 Please provide information regarding other
performance tests done or normal loads in
significant real installations.

Performance depends on hardware infrastructure and usage. From our Cloud server, the performance
of the Web Console and REST API is acceptable for a Web Application, most requests return requests in
under a second, some complex queries need a couple of seconds. See appendix A for performance
results using ApacheBench.

We also did a heavy load test with burst EHR creation and clinical document commit to evaluate
resource consumption more than performance
https://cabolabs.com/blog/article/i_tried_to_kill_the_ehrserver-5a9a340db6ebf.html

5.2.3 The test cases/scripts in chapter 6 (“Conformance
Schedule”) of the “openEHR EHR Platform
Conformance” document are not finished, but
when looking at the list of test descriptions, are
there any of the listed capabilities your system
has not yet implemented in some api-accessible
form?

- ADL 1.4 (ADL is not supported by the EHRServer, it works with final OPTs 1.4, all ADL management is
done before loading the EHRServer with OPTs)
- OPT 1.4 (all requirements are met, upload, list and get is done via the Web Console, list and get can be
done via API, not upload for security reasons)
- ADL 2 archetypes and ADL 2 templates (EHRServer works with OPT 1.4, it doesn't support templates on
ADL 2 yet)
- Queries (queries can be created, deleted, listed and executed via the Web Console, can be created,

https://cabolabs.com/blog/article/i_tried_to_kill_the_ehrserver-5a9a340db6ebf.html

listed and executed via the REST API)

5.3 Tooling & configuration

5.3.1 Does the product contain an application
development environment that enables
applications, registries etc. to be built on the
repository using openEHR data. Please describe.

The EHRServer is open source, can be downloaded and opened on any IDE that supports Java/Grails.

The recommendation is to create apps externally and use the REST API to communicate with the
back-end, rather than modifying the EHRServer core to add end-user functionalities. EHRServer is a
back-end, management and audit system, users are managers not clinicians.

5.3.2 Is there a graphical drag and drop form generator
(or similar functionality) available that makes it
easy to create HTML5-based data entry forms
(including client side validation and basic
constraint checking) based on openEHR
templates.

EHRServer is a back-end, management and audit system, users are managers not clinicians.

Apps should be created separately from the EHRServer and connect via REST. UI generation and data
validation on the apps is responsibility of the app developers.

5.3.3 Is there a function to render compositions as
human-readable documents (resolving
at/id-codes and hiding “technical” attributes)

Yes. Internally we use the official openEHR XML format, and XSLT to display contents for humans. Those
can be accessed via the Administrative Web Console, and will be very simple to access the generated
HTML from the REST API (not available yet, but can be added in a couple of hours if required).

5.3.4 Is an easy to use (e.g. drag-and-drop?) query
editor available to create AQL queries based on
Archetypes and Templates?

The EHRServer Query Builder is more "point and click" than "drag and drop". It is very easy to create
queries selecting templates, archetypes and paths, and defining conditions over data points. This is not
AQL.

5.3.5 Are functions like domains or namespaces
available to achieve a logical separation of data
between different care organisations using a
physically shared server instance?

Yes. EHRServer is multi-tenant. It actually support creating different organizations on the same server
instance,, and managing user permissions for each organization. Users can only access data from one
organization at a time. Committed compositions, operational templates and queries are all associated
with a specific organization.

6 Non-functional requirements

6.1 Infrastructure

6.1.1 List supported OS It's all Java, any OS is supported.

6.1.2 Support for cluster configuration (describe) Clusters can be configured at the RDBMS layer, this is set outside the app. We are working at the app
layer on a sync API that will allow to create EHRServer instance clusters at the app layer.

6.1.3 List supported DBMS It is based on Hibernate, any RDBMS is supported with minor adjustments. Default is MySQL.

6.1.4 Support of management packs for Microsoft
System Center

The system has no dependencies with any virtualization technology. It can be virtualized using any
platform. In production we have Apache Tomcat, MySQL, a SMTP server and the EHRServer deployed as
a WAR on Tomcat. That can be a box that can be virtualized on any platform. Also it can be divided to
have the DBMS on a different box.

6.1.5 Describe minimum hardware requirements for a
test installation

Very minimal: 1 CPU/1 Core, 512 MB RAM, 1 GB HD, 10/100 Mbps network
Minimal recommended: 1 CPU/4 cores, 2 GB RAM, 10 GB HD, 1000 Mbps network

6.1.6 Limitations on using virtualization
(hardware/IaaS)?

None.

6.2 Security

6.2.1 Support of role based authorization? Describe
(default/typical) roles

Yes.

We have four basic roles, that can be assigned to individual users over many organizations.

Roles:
ADMIN: super admin, can see/manage everything
ACCOUNT MANAGER: manages an account and it's organizations
ORGANIZATION MANAGER: manages specific organizations inside an account
USER: can only access the REST API, not the Web Console

6.2.2 Support of authentication tickets issued by an
Identity Provider (e,g, SAML)?

The Web Console has normal username/password authentication. Also the organization number is
required to login.
The API uses the same data to login and the app retrieves JWT (JSON Web Tokens) for successful logins,
that are used on subsequent requests on the API.

6.2.3 Support of logging; access and change? Yes.

Every action form the Administrative Web Console and the REST API is logged. We plan to externalize
that to a syslog server in the future to avoid storing audit data on the EHRServer database.

6.3 Training

6.3.1 Availability of course or on-line training for
administrators? Describe

CaboLabs brings many courses related to health information systems, standards and interoperability.
We have plenty of experience in this area, giving courses and workshops internationally since 2011. We
give openEHR-related courses for clinicians, project managers/administrators, and ITC professionals.
From conceptual to very technical levels.

6.3.2 Availability of course or on-line training for
technicians? Describe

Yes, see above.

6.3.3 Availability of course or on-line training for users?
Describe

Yes. Note that users of the EHRServer are managers and auditors, not clinicians.

6.4 Usage

6.4.1 Is the number of registered users limited, if so
what is the limit?

No. Business model is not based on licenses that constraint number of users.

6.4.2 Is the number of simultaneous users limited, if so
what is the limit?

No. Business model is not based on licenses that constraint number simultaneous of users.

6.4.3 Is the number of managed assets limited, if so
what is the limit?

No. Business model is not based on licenses that constraint number of assets (EHRs, compositions,
queries, OPTs, etc).

6.4.4 Does the license model allow usage for research
as well as caregiving?

Our business model is not based on licenses. You can use the EHRServer for any purpose required.

We especially support research, as all the data in stored in the EHRServer is anonymous, preserving
privacy.

https://cloudehrserver.com/learn/use_case_research_and_training
https://cloudehrserver.com/learn/anonymous_clinical_information

6.4.5 Does the software product provide client libraries
to support the development of software against
the system, if so in what program languages?

Yes. There are many open source libraries available, and we plan to support more. Also we have a
Swagger (Open API) specification of the EHRServer REST API, and Swagger has a code generation tool
that can be used to generate clients for more than 20 different technologies. We also provide an
Insomnia REST Client script, Insomnia also supports some code generation.

Current libraries are: Groovy, PHP and Javascript (REST API clients).
We also provide open source sample client applications (apps with GUI, not only REST API clients).

All is accessible from my GitHub account ​https://github.com/ppazos

6.5 Management

6.5.1 Is it possible to export system configuration
between different instances of the installation? If
so how?

Grails, the underlying dev framework, can use external configuration files, those can be copied between
servers. Changing this is very simple.

https://cloudehrserver.com/learn/use_case_research_and_training
https://github.com/ppazos

6.5.2 Is it possible to run multiple instances of the
installation on the same network without
conflicts? If so how?

Yes. Instances are independent from each other. Each server will have it's own IP.

6.5.3 Is it possible to run different versions of the same
system simultaneously within the same instance?

My interpretation for "instance" physical server (hardware), and the question is about having different
instances of the same software running on the same hardware. "system" can be interpreted as
software+hardware.

If that is the questions, yes, it can be done. Each software instance should be deployed on a different
context on the same Tomcat, or under different ports.

6.5.4 Does the software allow soft launches of new
versions?

Yes. We did just that in all 2017 for our Beta Partners. Gave early access and training for new releases
before the public release. Also since this is open source, everyone can download the latest code and run
it locally.

6.6 Integrations

6.6.1 Does the software product have an interface to
support import/export of HL7v2 messages?

We are working on receiving HL7 v2.x messages through a middleware (Mirth Connect), and transform
that into the canonical openEHR format. Similar to this, CDA will also be accepted as an input format.

6.6.2 Does the software product have an interface to
support import/export of HL7 FHIR messages?

We'll have support for receiving and retrieving FHIR compositions. This is not yet implemented, really
waiting on HL7 to make FHIR normative.

6.6.3 Does the system support automated extraction of
required IHE XDS.b data from openEHR
compositions?

We are working on openEHR-XDS.b mappings. I proposed to have an official mapping to the openEHR
Foundation, form the Specifications Editorial Committee (SEC), and we worked together with Ian
McNicoll on an initial proposal. This is not yet implemented.

6.6.4 Does the system support extraction, mapping and
storage of required DICOM metadata from KOS
Objects to openEHR compositions

Not yet. We are working with Mirth Connect that allows to receive DICOM objects and do mappings to
XML. We are planning to receive DICOM SRs this year, so KOS will be included on that.

Mirth Connect uses DCM4CHE Toolkit inside, the Java implementation of DICOM services. We have used
that technology since 2008, and Mirth since 2007.

6.6.5 Describe other integration support features of
the platform

To support SNOMED CT expressions in queries, we actually use an external system that evaluates the
expressions. That is a service from one of our partners. Via Mirth Connect (not directly implemented in
the EHRServer) we can receive data in many formats (HL7 v2.x, XML, JSON, X12, CSV) and
communication protocols (TCP, MLLP, HTTP, SOAP, DICOM, File Servers) and transform that into a valid
openEHR XML instance that can be committed to the EHRServer. The same applies to output formats for
queries, we can do conversions of the results to output any kind of format. All of these just requires to
do some mapping work on the middleware.

Appendix A. Performance tests with ApacheBench
https://httpd.apache.org/docs/2.4/programs/ab.html

Context of the tests

We have loaded 1K EHRs and 8K clinical documents in total.

Server​: Ubuntu 16.04, 1 CPU core, 2GB RAM, located in USA (EHRServer)

Client​: Linux Mint 17.3, 4 CPU cores, 8 GB RAM, located in Uruguay (ApacheBench)

https://httpd.apache.org/docs/2.4/programs/ab.html

All tests are done by invoking the EHRServer REST API with a valid authorization token (authorization step was done previously and authorization time is not considered for the

tests). All tests are single requests to the API and have different levels of complexity.

Considerations

Results depend on many factors, # of EHRs, # of Documents, # of documents containing each type of data used in the query criteria. Also on client and server machine
configurations (since communications are between 2 machines, the client machine hardware also affects the results, that is #of cores, available memory, network speed), also
the connection to the internet affects the results (is not the same a 56kbps connection or a 100 mbps connection).

Take into account that the pattern followed by AB is not a normal user pattern, AB is making burst requests, a lot of requests in a very short period of time. Depending on the
types of applications, implementation techniques (like caching responses), and the final user needs, the usage patterns might vary, and also the response times and perceived
performance by the end user.

A meaningful performance test should be binded to a specific usage pattern (so it can be simulated), database size, and specific data requirements. Also considering these
elements, optimal server and client hardware configuration requirements can be estimated.

A final item to consider is that for specific usage patterns and requirements, optimizations can be implemented.

Considering all of these, the data presented here is merely anecdotic, and just serves as a reference ot the specific use cases and patterns used on each specific test.

Test 1: get first 30 EHRs in JSON

Individual response size: 6842 bytes
Total transferred: 7057000 bytes
Total requests: 1000

Individual response time reported by Insomnia REST Client: < 200 ms

Sample response:

{

 "ehrs": [

 {

 "uid": "11111111-1111-1111-1111-111111111111",

 "dateCreated": "2018-03-10 02:51:30",

 "subjectUid": "11111111-1111-1111-1111-111111111111",

 "systemId": "CABOLABS_EHR_SERVER",

 "organizationUid": "e9d13294-bce7-44e7-9635-8e906da0c914"

 },

...

Concurrency Total time (s) Requests per second 50% reponse under (ms) 98% response under (ms) longest request
(ms) transfer rate (Kb/s)

5 77.634 12.88 390 432 442 88.77

10 44.768 22.34 452 510 552 153.94

20 27.806 35.96 566 649 698 247.84

50 16.825 59.44 838 1184 1536 409.61

Concurrency is the number of requests that are sent in parallel from AB.

Test 2: execute stored query, get clinical documents that contains diagnosis = any type of diabetes (using SNOMED CT

expressions), from all EHRs

Individual response size: 9733 bytes
Total transferred: 9946694 bytes
Total requests: 1000

Individual response time reported by Insomnia REST Client: < 300 ms

Sample response:

{

 "results": {

 "6ddff437-b670-4db7-b633-7d3e54d4c419": [

 {

 "uid": "13758272-eec8-43b4-b36b-1a48ff18a397",

 "category": "event",

 "startTime": "2011-03-25 18:20:14",

 "subjectId": "4911a12d-657e-4ea8-893c-bc09422ca372",

 "ehrUid": "6ddff437-b670-4db7-b633-7d3e54d4c419",

 "templateId": "encuentro_diagnostico_codificado.es.v1",

 "archetypeId": "openEHR-EHR-COMPOSITION.encounter.v1",

 "lastVersion": true,

 "organizationUid": "57919991-faa1-44c4-836d-da82cb8290dc",

 "parent": "03fb281e-44e1-498f-8b2f-93c9178eacef::CABOLABS-LOADEHR::1"

 },

...

Queries with SNOMED expressions use an external service to evaluate the SNOMED expression, that result is cached to accelerate local execution of the queries without
invoking the external service each time. Also improves performance for real time queries.

Concurrency Total time (s) Requests per second 50% reponse under (ms) 98% response under (ms) longest request
(ms)

transfer rate (Kb/s)

5 96.953 10.31 478 581 641 100.18

10 59.898 16.70 557 779 1835 162.17

20 39.215 25.50 789 1008 1309 247.71

50 26.98 37.07 1334 2247 2844 360.04

Test 3: execute query to get compositions containing records of low body mass index from all EHRs

Individual response size: 9535 bytes
Total transferred: 9749989 bytes
Total requests: 1000

Individual response time reported by Insomnia REST Client: < 200 ms

Sample response:

{

 "results": {

 "49cd207e-a85e-4fd8-9ba8-637f1dd5eabd": [

 {

 "uid": "19dd7a01-d246-4011-83e9-77cf8aff6bfb",

 "category": "event",

 "startTime": "2016-12-10 00:57:25",

 "subjectId": "a6e9920b-cef1-423f-b619-292f724c389c",

 "ehrUid": "49cd207e-a85e-4fd8-9ba8-637f1dd5eabd",

 "templateId": "control_del_peso.es.v1",

 "archetypeId": "openEHR-EHR-COMPOSITION.encounter.v1",

 "lastVersion": true,

 "organizationUid": "57919991-faa1-44c4-836d-da82cb8290dc",

 "parent": "ab448b7d-b250-4a14-9f94-93aed334dddb::CABOLABS-LOADEHR::1"

 }

],

...

Concurrency Total time (s) Requests per second 50% reponse under (ms) 98% response under (ms) longest request
(ms)

transfer rate (Kb/s)

5 127.079 7.87 629 757 898 74.93

10 92.759 10.78 923 1131 1237 102.65

20 68.874 14.52 1386 1747 1962 138.25

50 66.326 15.08 3245 5225 5578 143.57

Test 4: execute query to get body weight and BMI data from a patient (one specific EHR)

Individual response size: 909 bytes
Total transferred: 1123939 bytes
Total requests: 1000

Individual response time reported by Insomnia REST Client: < 200 ms

Sample response:

{

 "results": {

 "openEHR-EHR-OBSERVATION.body_weight.v1/data[at0002]/events[at0003]/data[at0001]/items[at0004]/value<DV_QUANTITY>": {

 "type": "DV_QUANTITY",

 "name": {

 "ISO_639-1::es": "Peso",

 "ISO_639-1::en": "Weight"

 },

 "serie": [

 {

 "magnitude": 111.0,

 "units": "kg",

 "date": "2010-03-07 01:02:29"

 },

 {

 "magnitude": 138.0,

 "units": "kg",

 "date": "2015-01-30 18:36:41"

 },

...

This kind of query is used to chart numeric data about vitals or lab results.

Concurrency Total time (s) Requests per second 50% reponse under (ms) 98% response under (ms) longest request
(ms)

transfer rate (Kb/s)

5 84.787 11.79 421 516 546 12.95

10 47.22 21.18 472 531 612 23.24

20 27.282 36.65 555 642 713 40.25

50 17.361 57.6 868 1296 1837 63.27

Test 5: execute EHR Query to get patients older than 35 years old, masculine, with obesity and any type of diabetes

(using SNOMED CT expressions, internally executes the query from Test 2)

Individual response size: 5968 bytes
Total transferred: 6183000 bytes
Total requests: 1000

Individual response time reported by Insomnia REST Client: < 800 ms

Sample response: (list of EHR UIDs that match the criteria)

[

 "0269563b-31dc-48e7-b430-4d468de2078e",

 "02ff2fae-2b5a-44ad-89b6-76feae4dac83",

 "0608575a-3d8e-4182-81f5-2f849e6de62c",

...

Note: This kind of query is executed to get reports, for pop health, or to select patients to participate in certain care and wellness plans or clinical trials, thus executed in batch
since it checks all the EHRs and takes some time to do so. The EHRServer provides the ability of creating such queries in minutes and then be able to run them from the Web
Console or the REST API. The execution pattern for these kind of queries won't be in bursts like our test here.

Concurrency Total time
(s)

Requests per second 50% reponse under (ms) 98% response under (ms) longest request
(ms)

transfer rate (Kb/s)

5 606.413 1.65 3001 3668 3768 9.96

10 523.171 1.91 5198 6261 6627 11.54

20 524.29 1.91 10750 13027 14263 11.52

50 493.854 2.02 25382 28559 29590 13.29

