
HIC 2006 Bridging the Digital Divide: Clinician, consumer and computer
Eds: Johanna Westbrook & Joanne Callen
Publisher: Health Informatics Society of Australia Ltd (HISA)
ISBN 0 9751013 7 4 © The author(s) & HISA All rights reserved
__

__
* paper peer review E1 DEST 2003 1

A Practical Implementation of a Two Level
Archetype Based Clinical Model

David Ashton

Meridian Health Informatics, Surry Hills NSW 2010

ABSTRACT

The concept of archetypes (Thomas Beale [1]) and their application to clinical
informatics is now recognised as a powerful model for designing EMR and EHR
systems. There have been a number of practical developments based on this
concept, most recently by DSTC in Queensland where an EHR trial is being
conducted for chronic disease management. Earlier attempts have also been
published (Ashton [2]) as well as other projects currently in progress. This paper
will describe a new two level schema for a clinical database engine based on
archetypes. It will describe how this engine will allow subject matter experts to
implement EHR and EMR systems, directly, without programmers. The elements
of the engine include an interface to define content (i.e. archetypes, structures and
rules), referred to as a ‘modeller’ and an end-user interface to enter and access
clinical information is referred to as a ‘validator/browser’. The paper will
describe how the unique design of these components allows expert clinicians to
take ownership of their clinical applications. It will also describe the application
of this technology to the development of a new NSW, state wide clinical obstetric
system (ObstetriX) that commenced live operation in August 2004.

Background
A clinical obstetric system (Obstet) based on two level model architecture was developed by the
author for Westmead hospital in 1992. The design was the subject of a paper published in 1996 [2]
and reviewed by Associate Professor C. J. (Kit) Dampney in 1998 [3]. The Obstet system was
developed using the Cognos development tool PowerHouse for operation in the Digital Vax/Alpha
mainframe environments. In 1995 NSW Department of Health (DoH) formed a consortium of
clinical users and Obstet was implemented in the major public teaching hospitals in NSW.

With the phasing out of mainframe technology, in 2003 the NSW DoH granted funding for the
development of ObstetriX to replace Obstet. ObstetriX was developed using Microsoft .NET
technology and provided a wider range of deployment, interface and integration options. The
ObstetriX project was completed in July 2004 and is in the process of implementation throughout
NSW.
Obstet and ObstetriX are both comprehensive Electronic Medical Record (EMR) systems that store
longitudinal clinical records for birthing women from first presentation through to delivery and
mother and baby discharge. These systems are an important element in patient management and a
valuable epidemiological resource for research purposes.

HIC 2006 Bridging the Digital Divide: Clinician, consumer and computer
Eds: Johanna Westbrook & Joanne Callen
Publisher: Health Informatics Society of Australia Ltd (HISA)
ISBN 0 9751013 7 4 © The author(s) & HISA All rights reserved
__

__
* paper peer review E1 DEST 2003 2

Today around 50% of all births in NSW are recorded on Obstet and ObstetriX with records on over
300,000 women. The system is used by thousands of clinicians in 30 birthing centres throughout the
state. This paper discusses the design principals used to develop both the Obstet and ObstetriX
applications.
Two level models
The idea behind using a two level model to describe a system schema is not new. There have been a
variety of systems developed, which make use of meta-meta data models. However Thomas Beale
(Beale et al [1]) introduced a new terminology and identified the design elements needed to build
robust applications, which are capable of meeting a wide range of user needs.

To understand the benefits of using a two level model it is useful to firstly review the conventional
single level model design approach. This approach to system design is usually introduced very early
in most undergraduate software engineering courses.

Classical approach to database system design
The single level data model is derived through the familiar process of data analysis called
normalisation1. Data items that relate to the subject are collected and grouped together to form
relations. These relations, and their attributes, are most frequently described in a relational database
schema and are called ‘meta-data’. The principle of normalisation promotes the recognition of
cardinality2 between entities and dependencies and has the effect of reducing redundancy but at the
same time increasing the number of relational tables in the database (C.J. Date [6]). There are
various levels of normalisation attainable but in all cases the process results in more relational
tables specified within the schema.

Primary Storage

Database SchemaClinical
Application

Entry & Access to
Information

Clinical Users Software Expert

Fig 1 Classical Design
What is the effect of normalisation on program component design? The aim is to reduce data
redundancy and make program modules more robust by increasing code/data independence.
Experience suggests however that when application design is focussed on tables then the number of
maintainable program elements as well as their complexity is an increasing function of the number
of tables rather than just the number of data attributes. Furthermore the complexity introduced by

1 Normalisation is a set of techniques for organising data into tables so as to eliminate certain types of redundancies.
Each attribute in a normalised entity is functionally dependent on the value of the whole key and no other attribute in
the model.

2 Cardinality is a term indicating the number of objects that can be related to another object. For example a mother
(object) may have zero or more children (objects). The ‘zero or more’ defines the cardinality between mother and child.

HIC 2006 Bridging the Digital Divide: Clinician, consumer and computer
Eds: Johanna Westbrook & Joanne Callen
Publisher: Health Informatics Society of Australia Ltd (HISA)
ISBN 0 9751013 7 4 © The author(s) & HISA All rights reserved
__

__
* paper peer review E1 DEST 2003 3

additional tables is not offset by the reduction in data redundancy. This assertion is supported by
traditional ‘function point’ analysis (A.J.Albrecht [5]).

The process of data model normalisation therefore increases application complexity and hence,
development and maintenance time and cost. Most importantly it means that changes to the data
model, either through new attributes or changed cardinality will involve changes to application
programs and professional developers in most instances would need to carry out these changes.

Data models in health related fields tend to contain significant numbers of attributes with often
unstable or volatile cardinality. Furthermore many of the data attributes, to be useful for aggregate
analysis, must be ‘classified’ or coded data. This means that these attributes need reference tables,
maintenance functions and version control. It follows that clinical systems, which are based on
conventional single level models, have large complex data models that are expensive to build and
maintain.

Two Level Model Schema Structure using Archetypes
The concept behind a two level data model is the introduction of a level of abstraction between the
program logic and the database schema (See figure2). This second model level focuses on
individual, self contained, clinical attributes that are independent meta descriptions of clinical
information such as ‘blood pressure’, ‘mode of delivery’ and ‘birth weight’. This model expresses
the character of these clinical data attributes and stores this information as data in the database
rather than in the database schema. Additional software is needed to manage this ‘meta’ data and
we name this application the ‘modeller’.

Primary Storage

Clinical Model

Database SchemaClinical
Application

Entry & Access to
Information

Clinical Users Clinical Domain
Experts

Modeller
Records &

Maintains Clinical
Model

Fig 2 Two Level Clinical Archetype Design

Central to the ‘two level’ model is the clinical attribute class or ‘archetype’. This class is a ‘meta’
definition of a clinical fact. Examples of instances of this class would be:

Table 1 Archetype examples

Archetype Name
Mnemonic

 ‘Mode of Delivery’ ModeofDelivery

‘Apgar Score 5 min’ ApgarScoreatFiveMinutes

‘Blood Group’ BloodGroup

‘Birth Weight’ BirthWeight

‘Stage One Onset’ StageOneOnset

HIC 2006 Bridging the Digital Divide: Clinician, consumer and computer
Eds: Johanna Westbrook & Joanne Callen
Publisher: Health Informatics Society of Australia Ltd (HISA)
ISBN 0 9751013 7 4 © The author(s) & HISA All rights reserved
__

__
* paper peer review E1 DEST 2003 4

‘Cervix Dilation’ CervixDilation

The mnemonic column is a convenient handle by which we can reference an archetype. An
Archetype is always related to a Domain, which are the set of constraints we apply when assigning
actual clinical values to the archetype. The descriptors that make up the Archetype and Domain are
referred to as a ‘class’ definition. Some properties of the Archetype class and the Domain sub class
include:

Archetype Class
→ Mnemonic
→ Name
→ Cardinality
→ Description
→ User Help
→ Narrative
→ Life span
→ Authority
→ Version

→ Domain class
→ Mnemonic
→ Description
→ Value Type
→ Event Value
→ Value
→ Help
→ Narrative
→ Thread class

Because archetypes are concepts or meta data, instances of these classes are actual user values that
can be associated with a patient:

Table 2 Archetype instance examples

Archetype Mnemonic Patient Instance #1 Patient Instance #2
ModeofDelivery.Description ‘Forceps’ ‘Vaginal Delivery’

ApgarScoreatFiveMinutes.Value <null> 7

ApgarScoreatFiveMinutes.Description ‘Not recorded’ ‘Score’

ApgarScoreatFiveMinutes.Type integer integer

BloodGroup.Description O+ <null>

BirthWeight.Value 3455 <null>

BirthWeight.Description ‘Grams’ ‘Not recorded’

StageOneOnset.EventValue 12-5-2005 12:10 am 12-5-2005 12:10 am

CervixDilation.Value 5 <null>

CervixDilation.Description ‘Cm’ ‘Not recorded’

HIC 2006 Bridging the Digital Divide: Clinician, consumer and computer
Eds: Johanna Westbrook & Joanne Callen
Publisher: Health Informatics Society of Australia Ltd (HISA)
ISBN 0 9751013 7 4 © The author(s) & HISA All rights reserved
__

__
* paper peer review E1 DEST 2003 5

ScalpPH.Value 3.4 2.8

As illustrated in these examples, when we create an instance of an archetype class it needs to be
represented by an object which could have many properties. In the ObstetriX implementation we
treat an archetype instance as a ‘composite object’ that can be referenced programmatically by a
unique mnemonic.

For the purpose of creating instances of archetypes and attaching those instances to actual patient
instances we need to introduce two organisational classes. These are ‘Groups’ and ‘Threads’ and
they allow us to form practical collections of archetypes that can be referenced in a program script.
Collections of archetypes are organised in the Thread class and collections of Threads organised in
the Group class.

Some properties of Thread and Group classes are:

Group Class
→ Description
→ Help
→ Date
→ Group Class
→ Thread class

→ Description
→ Help
→ Cardinality
→ Authority
→ Archetype class

Groups can link to collections of other group classes (eg a patient could have many pregnancies and
many babies). And archetypes can also link to threads via the Domain value class. For example, an
instance of the archetype ‘mode of delivery’ could have a ‘value’ ‘Caesarean Section’. This would
then be associated with a further thread class consisting of a collection of archetypes describing the
caesarean procedure and the reasons for it. Fig 3 illustrates this association between archetype
instances and threads and domain values.

Fig 3 Thread and sub-thread relationship

Birth Details Mode of Birth

Birth Weight

Apgar Score

Caesarian Caesarian Details

Indications

Cervix Dilation

2344 Kg

1 min 7

5 min 9

Thread Archetypes Domain Vlaues Sub thread Archetypes

2.5 cm

Failure to progress

Cord prolapse

Domain Values

The data model for storing archetype and archetype instances is shown in Fig 4

HIC 2006 Bridging the Digital Divide: Clinician, consumer and computer
Eds: Johanna Westbrook & Joanne Callen
Publisher: Health Informatics Society of Australia Ltd (HISA)
ISBN 0 9751013 7 4 © The author(s) & HISA All rights reserved
__

__
* paper peer review E1 DEST 2003 6

Fig 4 Archetype data model structure

This model consists of only eight primary entities. The Group, Thread, Archetype and Domain
Value comprise the clinical meta model. We refer to this as the ‘Archetype Model’. The
corresponding instance entities Group instance, Thread instance, Archetype instance and Domain
value instance represent the meta descriptions of the actual data. This is referred to as the
‘Reference Model’. It is significant that the meta-meta schema is completely generic and contains
no clinical subject matter.

Normalisation & Cardinality with Archetypes
Unlike many financial and administrative software applications, clinical systems often have
thousands rather than hundreds of data attributes with often complex and volatile cardinality and
relationships. One of the most significant advantages of building applications using archetypes is
that no normalisation of the clinical data model need take place at all. This is because the archetype
instance is a maximally normalised object in so far as there are no tables and the archetype stands
alone.

The thread and group structures allows a designer to organise archetypes into a convenient
assembly to permit a logical navigation and process flow for users. This means that assigning values
to archetype instances in a particular way will lead to other archetypes or groups of archetypes.
There is no ‘relational’ association between archetypes or tables structures that you might find in an
SQL database. If a situation exists where an archetype can have many instances this constraint can
be set as a property of the Archetype.

For example the archetype ‘Analgesia in stage one of labour’ can have more that one instance for a
woman giving birth, hence for this archetype, the cardinality property can be set to allow many
instances to be created. The Archetypes in the table below illustrate this property.

In a similar way, cardinality can be expressed as a property of a Thread. This allows collections of
archetype instances, attached to the thread, to be created. An example would be a thread of
archetype instances created each time a patient attended a clinic. In this case the Thread would need
to have cardinality greater than one with respect to the patient entity.

HIC 2006 Bridging the Digital Divide: Clinician, consumer and computer
Eds: Johanna Westbrook & Joanne Callen
Publisher: Health Informatics Society of Australia Ltd (HISA)
ISBN 0 9751013 7 4 © The author(s) & HISA All rights reserved
__

__
* paper peer review E1 DEST 2003 7

Table 2 Archetype instance examples

Archetype Archetype
Instance #

Patient Instance #1 Patient Instance
#2

‘Analgesia in stage one of labour’ 1 Nitrous oxide gas General

 2 Psychoprophylaxis

 3 Epidural

‘Obstetric indication/s CS’ 1 Poor progress in
labour >3cm

 2 Cord prolapse

 Application Component Design
The use of the ‘two level’ approach to system building profoundly changes the way an application
is designed. Two application modules are required. The ‘modeller’ application is used by domain
experts to create and maintain the instances of the archetype model. A ‘domain expert’ is most
likely to be a user who understands the specific information environment and business processes.
End-users use the ‘validator/browser’ to create and maintain instances of the Reference Model that
represent the actual data (see Fig 4).

As mentioned above, there is no longer any subject matter stored in the database meta schema. This
information is now stored as data (instances of the archetype model). It follows that there is no
longer any subject matter stored in lines of code of either the user application (Browser/Validator)
or the Modeller applications. This makes the application software completely independent of data.

Fig 5 The Archetype Process Model

Browser/Validator

Reference
Instances

1

1

1

1

Modeller

Archetypes
Instances

Reference Model Archetype Model

Constraint

Users Domain
experts

Clinical Information Clinical Model

Create Create
Read

Implement by Implement by
Implement by

Runtime
Constraint

Unlike most conventional computer applications the size and complexity of either application is no
longer dependent the number of subject related data attributes. Fig 5 illustrates the relationship of
process components to storage and meta-data components. This therefore is a method of building

HIC 2006 Bridging the Digital Divide: Clinician, consumer and computer
Eds: Johanna Westbrook & Joanne Callen
Publisher: Health Informatics Society of Australia Ltd (HISA)
ISBN 0 9751013 7 4 © The author(s) & HISA All rights reserved
__

__
* paper peer review E1 DEST 2003 8

large systems with highly generic components that can be extended without changing the central
application elements.

User Interface for an Archetype based system
In the previous section we described how our application creates instances of data from the
Reference model using the constraints applied from the Archetype model. All subject matter is
stored as data so our user application, the Browser/Validator, will be highly generic and can be
independent of clinical definitions. It will maintain instances of group, thread, archetype and
domain values and will be linked to a patient instance. The main functional components required to
support the interface are:

Patient instance maintenance; the archetype model needs to be linked to an actual patient entity. In
the case of ObstetriX this is a patient, a pregnancy or a baby entities. This module manages the
linkage of the reference model components these entities.

User path navigation; archetypes are organised by groups and threads according to clinical and
organisational needs. This component is implemented as a tree view and allows users to navigate
through the groups, threads and archetypes. The structure between the patient entity and the
archetype is referred to as the ‘path’. The navigator tree view is driven primarily by archetype
instance data.

Archetype instance maintenance; collections of archetypes are conveniently organised into threads,
and these form the atomic maintenance unit in the ObstetriX system. This component allows users
to create an instance of the Reference model according to the constraints in the Archetype model;
that is, the actual recording of clinical information.

The organisation of the ObstetriX clinician interface is show in fig 5. The left panel is a tree view
that organises archetypes using Groups and Threads. The central panel displays the list of
archetypes attached to the thread that is in focus on the tree view, if these have actual data instances
associated with them, then that data is also displayed. Multiple instances of archetypes appear as
multiple rows on this list. Archetype properties including descriptions and help messages provide
assistance to users. The right hand column contains the domain values possible for the archetype
that is in focus in the central panel. If the archetype has a value already then a ‘tick’ will appear
next to that value. The domain value panel also contains links to sub-threads and possible extension
values including text, numeric values and dates. If the domain value is classified as an event, then it
will always be associated with a date and time.

Recursive group structures are provided to organise threads. These structures are also used in the
tree view to link groups (or threads) to patient entities. The patient instance entities, patient,
pregnancy and baby, appear as ‘pseudo groups’ in the tree view structure. When a patient entity
group is in focus, then the attributes of that entity are made visible on the right hand panel of the
window.

HIC 2006 Bridging the Digital Divide: Clinician, consumer and computer
Eds: Johanna Westbrook & Joanne Callen
Publisher: Health Informatics Society of Australia Ltd (HISA)
ISBN 0 9751013 7 4 © The author(s) & HISA All rights reserved
__

__
* paper peer review E1 DEST 2003 9

Fig 6 ObstetriX User Interface

The same generic format is used for every Thread (see Fig 6). And the user interface for each
archetype is the same in all cases irrespective of whether the instance is a classification, text or
quantitative information. The selection of a domain item may also initiate a branch to a sub-thread.
While Figure 5 presents a GUI interface, an equivalent web interface is also available in ObstetriX.

While conventional systems may use a mixture of text fields, radio buttons, drop down lists and
select boxes, this style of interface has been found to be most attractive to users as it is consistent,
easy to learn and easy to obtain help when required. Users can focus on content rather than how to
‘operate’ the interface.

As each thread is completed the user is prompted to enter a personal identification code before the
thread can be update. Once updated, the thread name in the tree view will be set to bold. If at any
stage an archetype instance within a thread is changed, then the user ID is also recorded and a log is
retained of all changes made at the archetype level.

Archetype Modeller Interface and Information Context
The archetype modeller is designed to allow the expert users to specify the content of the system in
terms of the building blocks referred to in the previous sections. These are the groups, threads
archetypes and domain values. The modeller interface allows the designer (domain experts) to
build the tree view navigation structure that will enable the user to locate the threads and archetypes
for a patient entity. Archetypes and their properties and domain values can then be specified and
linked to threads.

The layout of the modeller interface is shown in Fig 7. The left hand panel allows the user
‘navigation tree view’ to be constructed, while the right hand windows provide for the specification
of archetype properties.

Designers can apply a security profile for either an archetype or a thread depending on the level of
privacy needed for the data. A security constraint applied to the thread will apply to all the

Help

Selected Domain Value

Description

Selected ArchetypesSelected Thread

Path

Archetype Instance values

Value

HIC 2006 Bridging the Digital Divide: Clinician, consumer and computer
Eds: Johanna Westbrook & Joanne Callen
Publisher: Health Informatics Society of Australia Ltd (HISA)
ISBN 0 9751013 7 4 © The author(s) & HISA All rights reserved
__

__
* paper peer review E1 DEST 2003 10

archetypes in the thread. Security constraints are role based with users able to access information on
a ‘need to know’ basis. Roles can be specified to be time dependent, based on the period of care
episode.

Fig 7 Modeller Interface
A central idea behind the concept of archetypes lies in the meaning of the term ‘archetype’. A
fragment of data is only meaningful if we understand the context in which it was recorded. The
words literal meaning is ‘original design’. If we create an instances of an archetype we are creating
information based on a particular model or ‘class’, and that information can only ever have meaning
in terms of that class definition. If we change that class, the instances or data created according to
the original class can only have meaning when associated with the original class or ‘archetype’.

This is a profoundly important concept so far as clinical data is concerned. When we create data
based on an archetype, for this data to be meaningful we must retain an exact copy of that archetype
at the time the data was recorded. If we wish to change the archetype, we must make a copy and
create a new version. The archetype version is a property of the archetype and domain value class.
Version maintenance is a critical function of the modeller interface.

The interface component used to create a new version of an archetype is show in Fig 8. Versions are
controlled through non-overlapping date time ranges which allow new version to be activated at a
planned point in time. All archetype instances created before the activation date and time will be
created according the version currently active, after the activation date, the new version is used.
Information is viewed in the context of the archetype version in existence when the data was
recorded.

Path

Security TabArchetypes Threads Groups Thread Property DefinitionThread Rule List

Thread
Mnemonic

HIC 2006 Bridging the Digital Divide: Clinician, consumer and computer
Eds: Johanna Westbrook & Joanne Callen
Publisher: Health Informatics Society of Australia Ltd (HISA)
ISBN 0 9751013 7 4 © The author(s) & HISA All rights reserved
__

__
* paper peer review E1 DEST 2003 11

The edit window shown in fig 8 will create a new version of the archetype if existing data instances
of that archetype are found. The example ‘Mode of Delivery’ is a complex archetype with a scope
that includes a number of sub threads.

Fig 8 Archetype Editor ‘Mode of Birth’

Archetype Relationships and Rules
The incorporation of archetype-based systems into real world computer applications leads us to
consider methods of referencing archetypes from programming languages. While the creation of
data instances conforms to the constraints of the Archetype model, there may also be clinical rules
that need to be evaluated using one or more other data instances that may also be in existence. For
clinical applications these data may have been entered at different times during the continuum of
care for a patient. Compliance rules may need to be applied to any property of an archetype instance
including classifications as well as value extensions.

In clinical applications, the requirement for procedural logic originates from the need to:

o Validate user entered data and prevent users from entering conflicting or invalid data,

o Assess clinical data and inform, warn or alert users of adverse clinical factors,

o Provide convenient summaries of clinical information,

o Perform calculations on quantitative data or calculate a value for display,

o Change archetype navigation depending on the value of entered data instances,

o Set and reset archetype instance values depending on entered data.

Valid
date/time
range

Archetype
Cardinality

Archetype Scope Tree view Archetype Properties

Archetype
Mnemonic

Domain
Mnemonics

Version
Toggle

HIC 2006 Bridging the Digital Divide: Clinician, consumer and computer
Eds: Johanna Westbrook & Joanne Callen
Publisher: Health Informatics Society of Australia Ltd (HISA)
ISBN 0 9751013 7 4 © The author(s) & HISA All rights reserved
__

__
* paper peer review E1 DEST 2003 12

In the ObstetriX example a rules language compiler has been integrated into the Modeller. Rule
procedures are encapsulated modules that can be activated by group, thread or archetype
manipulation (see Fig 9).

Thread
Instance A

Archetype
Instance 1

Archetype
Instance 3

Archetype
Instance 2

Thread
Instance B

Archetype
Instance 4

Archetype
Instance 6

Archetype
Instance 5

Group
Instance I

Execute Rule
Script

Response

Trigger 1

Trigger 2

Fig 9 Integration of Rules Scripting in ObstetriX
Modeller Rule code is a full function declarative language with structural similarities to Microsoft
C#. The Rule parser generates a compact execution module that can be triggered at runtime from
specific user actions on groups, threads and archetypes.

Archetypes are referenced programmatically by the thread, archetype or domain mnemonics using
the familiar object notation ‘dot’ syntax. The general form is:

For Archetype object properties

[<thread mnemonic>.<archetype mnemonic>.<version>]<property>

For Domain Value object properties

[<thread mnemonic>.<archetype mnemonic>.<version>.<domain mnemonic>]<property>

The inclusion of the thread mnemonic is optional and is added to improve the readability of the
code.

An example of the initial version of an archetype object reference for the mode of birth archetype
is:

[BabyBirthDetails.ModeBirth.1]

This table lists some of the properties of this archetype object and their values:

Property reference Type Value

1. [ModeBirth.1]Help string ‘Indicate the baby mode of birth’

2. [ModeBirth.1]Name string ‘Mode of Birth’

3. [ModeBirth.1]Exists boolean TRUE if an instance exists this archetype

4. [ModeBirth.1]Cardinality Integer 1

HIC 2006 Bridging the Digital Divide: Clinician, consumer and computer
Eds: Johanna Westbrook & Joanne Callen
Publisher: Health Informatics Society of Australia Ltd (HISA)
ISBN 0 9751013 7 4 © The author(s) & HISA All rights reserved
__

__
* paper peer review E1 DEST 2003 13

5. [ModeBirth.1]SelectedItemName string Contains the domain value name of the
instance of the archetype

6. [ModeBirth.1]SelectedItemValue Any Contains the domain extension of the
instance of the archetype entered by the
user

7. [ModeBirth.1]Count Integer Number of occurrences of the archetype
instance

8. [ModeBirth.1]Visible boolean TRUE, if the archetype is made visible,
within the thread, to the user. Can be set
by rules logic.

Note that property 1,2 and 4 are static properties that return values whether an archetype object
exists or not. 3, 5, 6, 7 and 8 return values that depend on the existence of a particular archetype
instance for a patient.

This table list some of the properties of the domain value object
[NeonatalDetails.BirthWeight.1.Grams]

Property reference Type Value

1. [BirthWeight.1.Grams]Exists boolean TRUE if a birth weight was entered

2. [BirthWeight.1.Grams]Value integer The weight of the baby in grams

3. [BirthWeight.1.Grams]Name string ‘Grams’

4. [BirthWeight.1.Grams]Help string ‘Specify the baby weight in grams. Valid
range is 800 to 5000 grams’

5. [BirthWeight.1.Grams]Text string Combination of Name and Value property.
Eg ‘2300 Grams’

6. [BirthWeight.1.Grams]Count int Number of occurrences of the domain
value instance

7. [BirthWeight.1.Grams]Visible boolean TRUE, if the domain value is made visible
to the user. Can be set by rules logic.

As with the archetype properties, 9 and 10 are static and the remaining properties are dependent on
the existence actual user data.

The following rule fragments illustrate how logic can be used to express rules between archetypes:

The rule prints an informative message to the user that the mother, having given birth to her first
child may be suitable for Anti-D medication if the baby’s rhesus factor is negative. Note the use of
the ‘Local()’ function that restricts the scope of the archetype object evaluation to the thread from
where the rule is triggered.

if ([AnyPriorPregnancy.1].Exists and
 [AnyPriorPregnancy.1.No].Exists and
 Local([RhesusFactor.1.Negative]).Exists)

HIC 2006 Bridging the Digital Divide: Clinician, consumer and computer
Eds: Johanna Westbrook & Joanne Callen
Publisher: Health Informatics Society of Australia Ltd (HISA)
ISBN 0 9751013 7 4 © The author(s) & HISA All rights reserved
__

__
* paper peer review E1 DEST 2003 14

Write("Is this Rhesus negative primipara suitable for Anti-D prophylaxis?");
We have discussed that a key advantage of archetype-based systems is that we can accommodate
complex cardinality because the archetype object is maximally normalised. Depending on the
cardinality of the archetype or thread and the scope of our rule, we must consider certain archetype
instance properties to be of type array. Using the rule parser we can express an indexed archetype or
domain value object in the usual way:

[<thread mnemonic>.<archetype mnemonic>.<version>][index].<property>

or

[<thread mnemonic>.<archetype mnemonic>.<version>].<property>[index]

The index allows us to reference the individual property values, while the count property will
indicate the maximum number of occurrences in existence.

Composite rules can be created, edited and compiled using the rules editor. This tool includes a
browser that allows archetype references to be easily added to the code.

Fig 11 Archetype Editor and compiler

The rules capability used with the archetype-based system allows the expression of clinical
knowledge to be conveniently modularised and embedded with the structure of the archetype.

Expert Users & Designer Competencies
In considering the concepts of application development using the two level model, we introduced a
new type of user called a ‘domain expert’. In the previous section however we discussed a rules
scripting language that involves logic expressions, object notation, control structures and local
variables that would require skills generally provided by an experienced programmer. It has been
demonstrated with the ObstetriX project that skilled clinical users (non-programmers) can build
comprehensive information systems that include the type of simple rules logic shown above. It is

Code Edit
Window

Archetype
browser

Domain
Values

Thread
List

HIC 2006 Bridging the Digital Divide: Clinician, consumer and computer
Eds: Johanna Westbrook & Joanne Callen
Publisher: Health Informatics Society of Australia Ltd (HISA)
ISBN 0 9751013 7 4 © The author(s) & HISA All rights reserved
__

__
* paper peer review E1 DEST 2003 15

inevitable however that more programming knowledge needs to be acquired to develop more
complex rules logic.

The key advantage of the rules implementation described above is that the implicit coupling of
information (via archetype object notation) to rules logic allows the user to focus on the logical
expression of the rule rather than the programming needed to retrieve the data and manage the rule
execution. This means that significantly less programming is required to express clinical rules and
many powerful rules can be expressed in just a few lines of code.

Rules generation from data mining - closing the knowledge loop
The use of an archetype based system that is oriented towards clinical classification, has the
potential to be developed into a valuable tool for improving clinical practice. The obstetric clinical
repository in use in NSW contains many hundreds of thousands of cases where information has
been recorded from first patient presentation through to delivery and discharge. This provides an
opportunity to correlate presenting clinical details with actual birth outcomes in a process called
data mining. Of particularly interest would be the analysis of certain adverse outcomes such as
prematurity and other complicated births that put mother and/or baby at risk.

Users

Archetype Model Clinical Repository

Rules Engine

Validator/
Browser

Data Mining
Utility

Rules logic
Compiler

Expert User

Figure 12 Data Mining Loop

The science of data mining can produce logic maps that can be expressed in terms of archetypes and
therefore directly implemented as scripted rules. The application of these rules for a presenting
patient would yield a quantitative measure of risk, and could result in interventions that would
mitigate that risk. This suggests the possibility of implementing a process of continuous knowledge
refinement as in Fig 12.

HIC 2006 Bridging the Digital Divide: Clinician, consumer and computer
Eds: Johanna Westbrook & Joanne Callen
Publisher: Health Informatics Society of Australia Ltd (HISA)
ISBN 0 9751013 7 4 © The author(s) & HISA All rights reserved
__

__
* paper peer review E1 DEST 2003 16

Conclusions
This paper has outlined a practical alternate method of building a clinical information system based
on two level data model architecture. The benefits of this approach have been confirmed by a major
program of implementation of the ObstetriX system in birthing units in NSW Public Hospitals. The
key benefits of this approach have been found to be:

o Dramatic savings in programming time can be achieved as domain experts rather than
programmers can carry out development and maintenance of functional clinical components.
The development of the generic components of the system can proceed independently as all
‘subject’ matter is stored in the clinical model.

o High level of user ownership and responsibility as the ‘clinical model’ is entirely created
and maintained by clinical and expert users and is seen as a separate intellectual product to
the generic programs.

o Easier for users to learn and operate. This is due to a single clinical model meta-structure for
the Archetype so the user is presented with a consistent application interface. And because
Archetypes are maximally normalised, they can be organised according to clinical
workflow. The result is less training time, better user acceptance and data compliance.

o Complete data consistency through versioning. The use of Archetype versioning allow
definitions to be changed without compromising historic data and for information to be
viewed in the exact context in which it was recorded. Versioning is date and time enabled
which allows changes to the clinical model to be made in a controlled way.

o The programming of business rules requires less effort and produces more stable and robust
logic. The availability of the archetype object class in rules scripting allows the development
of encapsulated rules that are easier to implement, maintain and verify. The developer is
able to focus on the expression of the business rule rather than how data is retrieved and
when the rule may be executed.

o Generic program components are more robust and less vulnerable to failure as they are not
subject to constant modification. In the two level model architecture no subject matter stored
in the database schema and the physical data schema is quite small, very stable and
independent of archetype model changes.

This paper has shown the effectiveness of using two level archetype based systems in the clinical
obstetric environment. This model for building Electronic Medical Record (EMR) and Electronic
Health Record (EHR) systems has the potential for wider application in other clinical areas as well
as any other area where there is a similar need for secure management of complex information.

Acknowledgements
I would like to thank the members of the NSW Obstet Consortium for their insight, faith and
courage in supporting the development of both Obstet and ObstetriX. In particular for the strong
support received from consortium chairman Dr Michael Nicholl (Senior Staff Specialist,
Department of Obstetrics & Gynaecology, RNSH). As suggested elsewhere in this document, the
‘two level’ approach is only possible if there exists competent and dedicated ‘subject matter experts’.

Thanks to midwives Kate Dyer and Helen Cook for their efforts in developing the first Obstet
clinical model (that is still in use in many hospitals in NSW). And special thanks to Catriona
Andronicos for stepping up to the many challenges of developing the ‘new’ ObstetriX model as
well as managing the complexities of a most unconventional software project.

HIC 2006 Bridging the Digital Divide: Clinician, consumer and computer
Eds: Johanna Westbrook & Joanne Callen
Publisher: Health Informatics Society of Australia Ltd (HISA)
ISBN 0 9751013 7 4 © The author(s) & HISA All rights reserved
__

__
* paper peer review E1 DEST 2003 17

This type of high-risk project, undertaken by a small software company, could not have proceeded
without support from the NSW Department of Health. Thanks to Siobhan Finnerty and Peter
Williams for their support for various stages of the project.

Finally thanks to Jongho Ju (senior software architect MHI) for his innovation and skill in the
physical design and development of the ObstetriX system.

Bibliography
[1] Beale, Thomas 2000. Archetypes – Constraint Based Domain Models for Future Proof Information Systems.
(Available at http://www.deepthought.com.au/)
[2] Ashton, David 1996. Data Modelling for Clinical Information Systems – Proceedings, Cognos User
Conference, Terrigal June 1996.
[3] Dampney, Prof CNG 1998. Review of “Prototyping Clinical Information Systems
(David Ashton, 1996)”
[4] Beale, Thomas 2002. A Shared Archetype and Template Language (Available at
http://www.deepthought.com.au/)
[5] Albrecht A.J. 1979, ‘Measuring Application Development Productivity’ in Proc. IBM Applications
Development Symposium. GUIDE Int and Share Inc., IBM Corp., Monterey, CA Oct 14-17,
[6] Date, C.J 1981. An Introduction to Database Systems Third Edition. Addison Wesley.
Gamma et al 1995. Design Patterns. Addison Wesley Longman.

Address for Correspondence
David Ashton
Managing Director
Meridian Health Informatics
51-57 Holt Street
Surry Hills NSW 2010
Phone: 9212 6055
Mobile: 0417 691197
Fax: 9211 4644
ashtond@meridianhi.com
www.meridianhi.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /ENA ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

